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A. Introduction 

As described elsewhere in this volume by 
Welte et aI., a human pluripotent hemo­
poietic colony-stimulating factor (CSF) 
was purified to apparent homogeneity 
from media conditioned by the human 
bladder carcinoma cell line, 5637. The puri­
fied material supports colony formation in 
vitro from human multipotential (CFU­
GEMM), early erythroid (BFU-E), granul­
ocyte and monocyte (CFU-G, M) progeni­
tor cells 4

• A murine CSF, Interleukin 3 or 
multi-CSP, with similar activities on nor­
mal mouse bone marrow [1, 2], has recently 
been purified [3] and genetically cloned [4]. 
Interleukin 3 was originally detected by its 
ability to induce 20-alpha-OH-steroid de­
hydrogenase (20aSDH) in cultured spleen 
cells of nulnu mice [5]. Later on it was dis­
covered to have biological activities on a 
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wide range of hemopoietic cells: progenitor 
cells of erythrocytes, megakaryocytes, gran­
ulocytes, monocytes and eosinophils, mast 
cells and their precursors, and possibly 
lymphocytes [2, 6-8]. Since come activities 
of Interleukin 3 and pluripotent CSP, or 
Pluripoietin, on hemopoietic progenitor 
cells appeared similar, we screened for ad­
ditional biological effects of Pluripoietin. 

B. Pluripoietin Supports In Vitro 
Development of Precursors of Colony­
Forming Progenitor Cells 

Normal human bone marrow cells taken 
from volunteers after informed consent 
were separated by density gradient cen­
trifugation on FicoU, adherence to plastic 
surfaces and depletion of cells rosetting at 
4°C with neuraminidase-treated sheep red 
blood cells. When this cell population was 
cultured in methy1cellulose as described [9], 
Pluripoietin in the absence of phy­
tohemagglutinin-stimulated lymphocyte­
conditioned medium (PHA-LCM) support­
ed colony formation from CFU-GEMM 
and BFU-E, suggesting that pluripotent 
CSF acts directly on early progenitor cells, 
not via macrophages or T-Iymphocytes as 
accessory cells of hematopoiesis. In agar 
cultures [10], Pluripoietin induced mostly 
neutrophil colonies by day 7, and neu­
trophil, macrophage, and mixed neu­
trophil/macrophage colonies as well as 
some eosinophil clusters by day 14. Fur­
thermore, Pluripoietin induced the devel­
opment of immature precursors of colony­
forming progenitor cells of granulocytes 



and macrophages [II]. This was studied by 
incubating low-density, nonadherent, and 
T-cell-depleted marrow cells in liquid cul­
ture in the presence of Pluripoietin for 7 
days prior to agar culture, in a granulocyte­
potentiating activity (AGPA)-type [121 or 
precursor of CFU-G, M progenitor cell 
(pre-CFU-c) [131 assay. There are no re­
ports of Interleukin 3 tested in such assays, 
but it appears to have a similar effect on 
murine stem cells in vitro prior to trans­
plantation [141. 

C. Pluripoietin Acts on Mature 
'Hemopoietic Cells 

Normal human peripheral blood mono­
cytes were isolated by adherence pro­
cedures as described [15]. When cultured in 
the presence of Pluripoietin from day I 
through 4, monocytesl macrophages 
showed marked spreading and an increase 
of adherent cell protein, suggesting in­
creased protein synthesis as compared with 
untreated controls [IIJ. This effect was not 
seen when Pluripoietin was added at day 4 
of culture or later, possibly because macro­
phages produce their own CSF. Pluri­
poietin did not increase the production of 
H20 2 -producing enzymes or anti-Toxo­
plasma activity in macrophages when 
added after 3 days of culture [15J. Inter­
leukin 3 was not reported to be active on 
macrophages, but its activity in supporting 
long-term growth in vitro of natural cyto­
toxic effector cells [16] and histamine-pro­
ducing cells [6] may reflect activities on ma­
ture hemopoietic cells. 

D. Pluripoietin Induces Differentiation 
in Leukemic Cell Lines 

Differentiation of leukemic cell lines in vi­
tro can be achieved by a variety of 
nonphysiologic [e.g., dimethylsulfoxide 
(DMSO), phorboldiestersJ and physiologic 
(e.g., retinoic acid, vitamin D3) inducers 
[17]. Murine granulocyte-CSF (G-CSF) is 
known to be a potent inducer of differen­
tiation of WEHI-3B (D +) murine myelo­
monocytic leukemia cells, whereas In­
terleukin 3 lacks this activity (for review, 

see [ID. We tested Pluripoietin for leu­
kemia-differentiating activity (GM-DF, 
leukemia-differentiating activity for gran­
ulocyte and macrophage pathway) in a 
clonal assay system described by Metcalf 
[18J, using murine WEHI-3B (D + ) and hu­
man HL-60 promyelocytic leukemia cell 
lines [11]. Quantitation of GM-DF was ob­
tained by incubation of leukemic cells in 
agar with serial dilutions of pluripotent 
CSF. Pluripoietin had GM-DF activity on 
both cell lines. However, HL-60 required 
approximately fivefold higher concentra­
tions of Pluripoietin to achieve 50% differ­
entiated, spreading colonies versus un­
differentiated tight blast-cell colonies than 
did WEHI-3B (D+) [11]. The human leu­
kemia cell line KG 1 (courtesy Dr. H. P. 
Koeffier) responded to Pluripoietin with in­
creased colony formation in agar and in­
creased [3H] thymidine incorporation after 
24-48 h in suspension culture. This might 
indicate that the GM-DF activity of 
Pluripoietin reflects the differentiating ca­
pacity of leukemia cell lines rather than an 
intrinsic property of the factor. 

Table 1. Murine mast-cell growth factor activity 
of Pluripoietin 

Stimulator 

ConA-LBRM CM 
1:4 
1:8 
1:16 

Medium 
Pluripoietin 

500 Vlml 
250 Vlml 
125 Vlml 
63 Vlml 

[3H] thymi- [3H] thymi­
dine uptake dine uptake 
(cpm) (% max) 

5617± 12" 100 
4416±661 a 79 
2987± 70· 53 

164± 64 2.9 

344± 87 b 6.7 
594± 153 b 11.5 
485±214 c 9.4 
380± 105 b 7.4 

Results are expressed as mean ± I standard devi­
ation of triplicate cultures. 
Significance of difference from medium control 
cultures (Student's t-test): 
" 2 P<O.OOI 
b 2 P<O.05 
c 2 P<O.1 

419 



Table 2. Biological activi­
ties of purified human 
Pluripoietin and murine 
Interleukin 3 

Activity 

Clonal growth of 
hemopoietic progenitors: 

CFU-GEMM 
BFU-E 
CFU-G,M,GM 
CFU-EOS 
CFU-MEG 
pr~-CFU-c (LlGPA) 
Stem-cell multiplication 
(CFU-s) 

Species cross-reactivityc 
Leukemia-differentiating 
activity (GM-DF) on: 

WEHI-3B (D+) 
HL60 

[3H] thymidine uptake in cell lines: 
KGI 
FDC-P2 
Murine mast-cell lines 
(MCGF activity) 

Histamine production 
Protein synthesis of 

mature macrophages 
Induction of20aSDH 
Growth of: 

Natural cytotoxic cells 
Pre-B-cell clones 

Pluri­
poietin a 

+ 
+ 
+ 
+ 
NT 
+ 
d 

± 

+ 
+ 

+ 

± 

NT 

+ 

d 

d 

NT 

Inter­
leukin 3 b 

+ 
+ 
+ 
+ 
+ 
NT 
+ 

+ 
+ 

+ 
NT 

+ 

+ 
+ 

a Pluripoietin was tested on human target cells, ifnot noted otherwise 
b Interleukin 3 activity on murine target cells, if not noted otherwise. 

Data derived from literature, except GM-DF and activity on KG 1 
c Activity on bone-marrow-derived colony formation in agar cultures 
d No human test system available 
NT, not tested 

E. Pluripoietin Shows Minimal Species 
Cross-Reactivity on Murine Cells 

on continuous murine mast-cell lines, es­
tablished as described from murine long­
term bone marrow cultures [19]. Five thou­
sand cells per well of a mast-cell growth 
factor (MCGF)-dependent murine mast­
cell line were incubated for 24 h at 37°C in 
96 well plates with serial dilutions of 
growth factors and then assayed for 
[3H] thymidine uptake as described [20]. 
The results are given in Table 1 and dem­
onstrate little more than 10% murine 
MCGF activity ofPluripoietin as compared 
with ConA-LBRM CM (concanavalin-A­
stimulated conditioned media from LBRM 
murine lymphoma line), which was used as 
a standard preparation of murine MCGF. 

Normal mouse bone marrow cells cultured 
in agar for 7 days in the presence of satu­
rating concentrations of Pluripoietin 
formed approximately 10% of the colonies 
supported by WEHI-3B-conditioned media 
as a standard source of CSF(s). All colonies 
formed in the presence of Pluripoietin were 
of similar morphology, not staining for al­
pha-naphthyl-acetate esterase or Kaplow's 
myeloperoxidase; this suggests that only a 
subpopulation of murine colony-forming 
progenitors is responsive to Pluripoietin. 
Weak cross-species activity was also found 
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The murine Interleukin-3-dependent cell 
line FDC-P2 (courtesy Dr. M. Dexter) did 
not respond with increased [3H] thymidine 
uptake to concentrations of Pluripoietin as 
high as 2000 Vlml (data not shown). 

F. Conclusion 

Table 2 gives a summary of biological ac­
tivities of Pluripoietin and Interleukin 3. 
Comparison is incomplete, since for some 
activities of Interleukin 3 on murine cells 
there exist no equivalent human assay sys­
tems, as for instance long-term mast-cell 
lines. From the results obtained so far, leu­
kemia-differentiating activity is a most re­
markable property of Pluripoietin, dis­
tinguishing it from murine Interleukin 3, 
which lacks this activity [l]. In addition, 
Pluripoietin is active on a wide range of 
hemopoietic cells, with respect to cell lin­
eage and to their place in the hierarchy of 
stem cells to mature cells. The availability 
of purified human hemopoietic growth fac­
tors should facilitate future studies of com­
pl~x . regulatory mechanisms in hemato­
pOIesIs. 
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